Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(12): e2316878121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38466851

RESUMEN

Deep sea cold seeps are sites where hydrogen sulfide, methane, and other hydrocarbon-rich fluids vent from the ocean floor. They are an important component of Earth's carbon cycle in which subsurface hydrocarbons form the energy source for highly diverse benthic micro- and macro-fauna in what is otherwise vast and spartan sea scape. Passive continental margin cold seeps are typically attributed to the migration of hydrocarbons generated from deeply buried source rocks. Many of these seeps occur over salt tectonic provinces, where the movement of salt generates complex fault systems that can enable fluid migration or create seals and traps associated with reservoir formation. The elevated advective heat transport of the salt also produces a chimney effect directly over these structures. Here, we provide geophysical and geochemical evidence that the salt chimney effect in conjunction with diapiric faulting drives a subsurface groundwater circulation system that brings dissolved inorganic carbon, nutrient-rich deep basinal fluids, and potentially overlying seawater onto the crests of deeply buried salt diapirs. The mobilized fluids fuel methanogenic archaea locally enhancing the deep biosphere. The resulting elevated biogenic methane production, alongside the upward heat-driven fluid transport, represents a previously unrecognized mechanism of cold seep formation and regulation.

2.
Life (Basel) ; 13(12)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38137926

RESUMEN

Isotopologue ratios are anticipated to be one of the most promising signs of life that can be observed remotely. On Earth, carbon isotopes have been used for decades as evidence of modern and early metabolic processes. In fact, carbon isotopes may be the oldest evidence for life on Earth, though there are alternative geological processes that can lead to the same magnitude of fractionation. However, using isotopologues as biosignature gases in exoplanet atmospheres presents several challenges. Most significantly, we will only have limited knowledge of the underlying abiotic carbon reservoir of an exoplanet. Atmospheric carbon isotope ratios will thus have to be compared against the local interstellar medium or, better yet, their host star. A further substantial complication is the limited precision of remote atmospheric measurements using spectroscopy. The various metabolic processes that cause isotope fractionation cause less fractionation than anticipated measurement precision (biological fractionation is typically 2 to 7%). While this level of precision is easily reachable in the laboratory or with special in situ instruments, it is out of reach of current telescope technology to measure isotope ratios for terrestrial exoplanet atmospheres. Thus, gas isotopologues are poor biosignatures for exoplanets given our current and foreseeable technological limitations.

3.
Proc Natl Acad Sci U S A ; 120(47): e2305574120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37956282

RESUMEN

We apply a recently developed measurement technique for methane (CH4) isotopologues* (isotopic variants of CH4-13CH4, 12CH3D, 13CH3D, and 12CH2D2) to identify contributions to the atmospheric burden from fossil fuel and microbial sources. The aim of this study is to constrain factors that ultimately control the concentration of this potent greenhouse gas on global, regional, and local levels. While predictions of atmospheric methane isotopologues have been modeled, we present direct measurements that point to a different atmospheric methane composition and to a microbial flux with less clumping (greater deficits relative to stochastic) in both 13CH3D and 12CH2D2 than had been previously assigned. These differences make atmospheric isotopologue data sufficiently sensitive to variations in microbial to fossil fuel fluxes to distinguish between emissions scenarios such as those generated by different versions of EDGAR (the Emissions Database for Global Atmospheric Research), even when existing constraints on the atmospheric CH4 concentration profile as well as traditional isotopes are kept constant.

4.
Nat Commun ; 14(1): 279, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36650167

RESUMEN

Understanding the timing and trajectory of atmospheric oxygenation remains fundamental to deciphering its causes and consequences. Given its origin in oxygen-free photochemistry, mass-independent sulfur isotope fractionation (S-MIF) is widely accepted as a geochemical fingerprint of an anoxic atmosphere. Nevertheless, S-MIF recycling through oxidative sulfide weathering-commonly termed the crustal memory effect (CME)-potentially decouples the multiple sulfur isotope (MSI) record from coeval atmospheric chemistry. Herein, however, after accounting for unrecognised temporal and spatial biases within the Archaean-early-Palaeoproterozoic MSI record, we demonstrate that the global expression of the CME is barely resolvable; thereby validating S-MIF as a tracer of contemporaneous atmospheric chemistry during Earth's incipient oxygenation. Next, utilising statistical approaches, supported by new MSI data, we show that the reconciliation of adjacent, yet seemingly discrepant, South African MSI records requires that the rare instances of post-2.3-billion-year-old S-MIF are stratigraphically restricted. Accepting others' primary photochemical interpretation, our approach demands that these implied atmospheric dynamics were ephemeral, operating on sub-hundred-thousand-year timescales. Importantly, these apparent atmospheric relapses were fundamentally different from older putative oxygenation episodes, implicating an intermediate, and potentially uniquely feedback-sensitive, Earth system state in the wake of the Great Oxidation Event.

5.
Proc Natl Acad Sci U S A ; 119(13): e2025606119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35312361

RESUMEN

SignificanceThe permanent disappearance of mass-independent sulfur isotope fractionation (S-MIF) from the sedimentary record has become a widely accepted proxy for atmospheric oxygenation. This framework, however, neglects inheritance from oxidative weathering of pre-existing S-MIF-bearing sedimentary sulfide minerals (i.e., crustal memory), which has recently been invoked to explain apparent discrepancies within the sulfur isotope record. Herein, we demonstrate that such a crustal memory effect does not confound the Carletonville S-isotope record; rather, the pronounced Δ33S values identified within the Rooihoogte Formation represent the youngest known unequivocal oxygen-free photochemical products. Previously observed 33S-enrichments within the succeeding Timeball Hill Formation, however, contrasts with our record, revealing kilometer-scale heterogeneities that highlight significant uncertainties in our understanding of the dynamics of Earth's oxygenation.

6.
Environ Sci Technol ; 56(5): 3225-3233, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35142487

RESUMEN

Subsurface microbial (biogenic) methane production is an important part of the global carbon cycle that has resulted in natural gas accumulations in many coal beds worldwide. Laboratory studies suggest that complex carbon-containing nutrients (e.g., yeast or algae extract) can stimulate methane production, yet the effectiveness of these nutrients within coal beds is unknown. Here, we use downhole monitoring methods in combination with deuterated water (D2O) and a 200-liter injection of 0.1% yeast extract (YE) to stimulate and isotopically label newly generated methane. A total dissolved gas pressure sensor enabled real-time gas measurements (641 days preinjection and for 478 days postinjection). Downhole samples, collected with subsurface environmental samplers, indicate that methane increased 132% above preinjection levels based on isotopic labeling from D2O, 108% based on pressure readings, and 183% based on methane measurements 266 days postinjection. Demonstrating that YE enhances biogenic coalbed methane production in situ using multiple novel measurement methods has immediate implications for other field-scale biogenic methane investigations, including in situ methods to detect and track microbial activities related to the methanogenic turnover of recalcitrant carbon in the subsurface.


Asunto(s)
Carbón Mineral , Metano , Carbono , Gas Natural
7.
Proc Natl Acad Sci U S A ; 117(34): 20453-20461, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32817473

RESUMEN

Subseafloor mixing of high-temperature hot-spring fluids with cold seawater creates intermediate-temperature diffuse fluids that are replete with potential chemical energy. This energy can be harnessed by a chemosynthetic biosphere that permeates hydrothermal regions on Earth. Shifts in the abundance of redox-reactive species in diffuse fluids are often interpreted to reflect the direct influence of subseafloor microbial activity on fluid geochemical budgets. Here, we examine hydrothermal fluids venting at 44 to 149 °C at the Piccard hydrothermal field that span the canonical 122 °C limit to life, and thus provide a rare opportunity to study the transition between habitable and uninhabitable environments. In contrast with previous studies, we show that hydrocarbons are contributed by biomass pyrolysis, while abiotic sulfate (SO42-) reduction produces large depletions in H2 The latter process consumes energy that could otherwise support key metabolic strategies employed by the subseafloor biosphere. Available Gibbs free energy is reduced by 71 to 86% across the habitable temperature range for both hydrogenotrophic SO42- reduction to hydrogen sulfide (H2S) and carbon dioxide (CO2) reduction to methane (CH4). The abiotic H2 sink we identify has implications for the productivity of subseafloor microbial ecosystems and is an important process to consider within models of H2 production and consumption in young oceanic crust.


Asunto(s)
Respiraderos Hidrotermales/química , Calor , Hidrógeno/química , Respiraderos Hidrotermales/microbiología , Oxidación-Reducción , Agua de Mar/química
9.
Anal Chem ; 91(23): 14967-14974, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31663335

RESUMEN

We present precise measurements of doubly deuterated methane (12CH2D2) in natural methane samples using tunable infrared laser direct absorption spectroscopy (TILDAS). Using a 413 m optical path length astigmatic Herriott cell and two quantum cascade lasers (QCLs) scanning the spectral regions of 1090.46 ± 0.1 and 1200.23 ± 0.1 cm-1, the instrument simultaneously measures the five main isotopologues of methane. The ratios 13CH3D/12CH4 and 12CH2D2/12CH4 are measured at 0.01‰ and 0.5‰ (1σ) instrumental precision, respectively. The instrumental accuracy was assessed by measuring a series of methane gases with a range of δ13C and δD values but with the abundances of all isotopologues driven to thermal equilibrium at 250 °C. The estimated accuracy of Δ12CH2D2 is 1‰ (1σ) on the basis of the results of the heated methane samples. This new TILDAS instrument provides a simple and rapid technique to explore the sources of methane in the environment.

10.
J Phys Chem A ; 123(12): 2320-2324, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30821968

RESUMEN

Confusion over how to account for symmetry numbers when reactants are identical can cause significant errors in isotopic studies. An extraneous factor of 2 in the reaction symmetry number, as proposed in the literature, violates reaction equilibrium and causes huge enrichment errors in isotopic analysis. In actuality, no extra symmetry factor is needed with identical reactants.

11.
PLoS One ; 13(11): e0206678, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30427903

RESUMEN

The ability to measure partial pressures of oxygen below 100 microbars and nanomolar dissolved oxygen concentrations in in situ laboratory systems benefits many fields including microbiology, geobiology, oceanography, chemistry, and materials science. Here, we present an easily constructible open-source design for a networked luminescence lifetime measurement system for in situ measurements in arbitrary laboratory containers. The system is well suited for measuring oxygen partial pressures in the 0-100 µbar range, with the maximum potentially usable upper range limit at around 10 mbar, depending on experimental conditions. The sensor has a limited drift and its detectability limit for oxygen is at 0.02 µbar for short timescale measurements. Each sensor can connect to a Wi-Fi network and send the logged data either over the Internet or to a local server, enabling a large number of parallel unattended experiments. Designs are also provided for attaching the sensor to various commercially available containers used in laboratories. The design files are released under an open source license, which enables other laboratories to build, customize, and use these sensors.


Asunto(s)
Equipos y Suministros Eléctricos , Oxígeno/análisis , Tecnología Inalámbrica/instrumentación , Acceso a la Información , Calibración , Diseño de Equipo , Colorantes Fluorescentes/química , Vidrio , Internet , Imagen Óptica/instrumentación , Presión Parcial , Impresión Tridimensional , Programas Informáticos , Factores de Tiempo
12.
Sci Adv ; 4(6): eaao4631, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29928689

RESUMEN

Microbial life inhabiting subseafloor sediments plays an important role in Earth's carbon cycle. However, the impact of geodynamic processes on the distributions and carbon-cycling activities of subseafloor life remains poorly constrained. We explore a submarine mud volcano of the Nankai accretionary complex by drilling down to 200 m below the summit. Stable isotopic compositions of water and carbon compounds, including clumped methane isotopologues, suggest that ~90% of methane is microbially produced at 16° to 30°C and 300 to 900 m below seafloor, corresponding to the basin bottom, where fluids in the accretionary prism are supplied via megasplay faults. Radiotracer experiments showed that relatively small microbial populations in deep mud volcano sediments (102 to 103 cells cm-3) include highly active hydrogenotrophic methanogens and acetogens. Our findings indicate that subduction-associated fluid migration has stimulated microbial activity in the mud reservoir and that mud volcanoes may contribute more substantially to the methane budget than previously estimated.

13.
Nat Commun ; 9(1): 978, 2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29515129

RESUMEN

The marine nitrogen cycle is dominated by redox-controlled biogeochemical processes and, therefore, is likely to have been revolutionised in response to Earth-surface oxygenation. The details, timing, and trajectory of nitrogen cycle evolution, however, remain elusive. Here we couple nitrogen and carbon isotope records from multiple drillcores through the Rooihoogte-Timeball Hill Formations from across the Carletonville area of the Kaapvaal Craton where the Great Oxygenation Event (GOE) and its aftermath are recorded. Our data reveal that aerobic nitrogen cycling, featuring metabolisms involving nitrogen oxyanions, was well established prior to the GOE and that ammonium may have dominated the dissolved nitrogen inventory. Pronounced signals of diazotrophy imply a stepwise evolution, with a temporary intermediate stage where both ammonium and nitrate may have been scarce. We suggest that the emergence of the modern nitrogen cycle, with metabolic processes that approximate their contemporary balance, was retarded by low environmental oxygen availability.


Asunto(s)
Fijación del Nitrógeno , Nitrógeno/química , Oxígeno/química , Ecosistema , Sedimentos Geológicos/química , Historia Antigua , Ciclo del Nitrógeno , Paleontología/historia , Agua de Mar/química , Sudáfrica
14.
Front Microbiol ; 8: 890, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28611734

RESUMEN

We investigated the influence of organic substrates and phosphate concentration on the rates of dissimilatory microbial sulfate reduction and the 34S/32S isotopic fractionation produced by several Desulfovibrio species. Our experiments corroborate the previously reported species-specific correlation between sulfur isotope fractionation and cell-specific sulfate reduction rates. We also identify cell size as a key factor that contributes to the species-effect of this correlation. Phosphate limitation results in larger cells and contributes to a small decrease in sulfur isotope fractionation concomitant with an apparent increase in cell-specific sulfate reduction rates. Sulfur isotope fractionation in phosphate-limited cultures asymptotically approaches a lower limit of approximately 5‰ as cell-specific sulfate reduction rates increase to >100 fmol cell-1 day-1. These experimental results test models that link the reversibilities of enzymatic steps in dissimilatory sulfate reduction to sulfur isotope fractionation and show that these models can provide consistent predictions across large variations in physiological states experienced by sulfate reducing bacteria.

15.
Proc Natl Acad Sci U S A ; 113(49): E7927-E7936, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27872277

RESUMEN

Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H2 Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH4 to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic ß-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H2 oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface.


Asunto(s)
Desnitrificación , Ecosistema , Metano/biosíntesis , Microbiota , Azufre/metabolismo , Procesos Autotróficos , Carbono/metabolismo , Nitrógeno/metabolismo , Sudáfrica
16.
Sci Adv ; 2(5): e1600134, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27386544

RESUMEN

Molecular oxygen (O2) is, and has been, a primary driver of biological evolution and shapes the contemporary landscape of Earth's biogeochemical cycles. Although "whiffs" of oxygen have been documented in the Archean atmosphere, substantial O2 did not accumulate irreversibly until the Early Paleoproterozoic, during what has been termed the Great Oxygenation Event (GOE). The timing of the GOE and the rate at which this oxygenation took place have been poorly constrained until now. We report the transition (that is, from being mass-independent to becoming mass-dependent) in multiple sulfur isotope signals of diagenetic pyrite in a continuous sedimentary sequence in three coeval drill cores in the Transvaal Supergroup, South Africa. These data precisely constrain the GOE to 2.33 billion years ago. The new data suggest that the oxygenation occurred rapidly-within 1 to 10 million years-and was followed by a slower rise in the ocean sulfate inventory. Our data indicate that a climate perturbation predated the GOE, whereas the relationships among GOE, "Snowball Earth" glaciation, and biogeochemical cycling will require further stratigraphic correlation supported with precise chronologies and paleolatitude reconstructions.


Asunto(s)
Atmósfera , Planeta Tierra , Oxígeno , Atmósfera/análisis , Atmósfera/química , Evolución Planetaria , Historia Antigua , Hierro , Oxígeno/análisis , Sulfuros
17.
J Chem Phys ; 142(14): 144201, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25877571

RESUMEN

Millimeter-wave detected, millimeter-wave optical double resonance (mmODR) spectroscopy is a powerful tool for the analysis of dense, complicated regions in the optical spectra of small molecules. The availability of cavity-free microwave and millimeter wave spectrometers with frequency-agile generation and detection of radiation (required for chirped-pulse Fourier-transform spectroscopy) opens up new schemes for double resonance experiments. We demonstrate a multiplexed population labeling scheme for rapid acquisition of double resonance spectra, probing multiple rotational transitions simultaneously. We also demonstrate a millimeter-wave implementation of the coherence-converted population transfer scheme for background-free mmODR, which provides a ∼10-fold sensitivity improvement over the population labeling scheme. We analyze perturbations in the C̃ state of SO2, and we rotationally assign a b2 vibrational level at 45,328 cm(-1) that borrows intensity via a c-axis Coriolis interaction. We also demonstrate the effectiveness of our multiplexed mmODR scheme for rapid acquisition and assignment of three predissociated vibrational levels of the C̃ state of SO2 between 46,800 and 47,650 cm(-1).

18.
Science ; 348(6233): 428-31, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25745067

RESUMEN

Methane is a key component in the global carbon cycle, with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply substituted "clumped" isotopologues (for example, (13)CH3D) has recently emerged as a proxy for determining methane-formation temperatures. However, the effect of biological processes on methane's clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on (13)CH3D abundances and results in anomalously elevated formation-temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters.


Asunto(s)
Ciclo del Carbono , Metano/biosíntesis , Methanomicrobiales/metabolismo , Animales , Isótopos de Carbono/química , Bovinos , Agua Subterránea/química , Hidrógeno/química , Metano/química , Temperatura
19.
Front Microbiol ; 5: 591, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25505449

RESUMEN

Dissimilatory sulfate reduction serves as a key metabolic carbon remineralization process in anoxic marine environments. Sulfate reducing microorganisms can impart a wide range in mass-dependent sulfur isotopic fractionation. As such, the presence and relative activity of these organisms is identifiable from geological materials. By extension, sulfur isotope records are used to infer the redox balance of marine sedimentary environments, and the oxidation state of Earth's oceans and atmosphere. However, recent work suggests that our understanding of microbial sulfate reduction (MSRs) may be missing complexity associated with the presence and role of key chemical intermediates in the reductive process. This study provides a test of proposed metabolic models of sulfate reduction by growing an axenic culture of the well-studied MSRs, Desulfovibrio alaskensis strain G20, under electron donor limited conditions on the terminal electron acceptors sulfate, sulfite or thiosulfate, and tracking the multiple S isotopic consequences of each condition set. The dissimilatory reduction of thiosulfate and sulfite produce unique minor isotope effects, as compared to the reduction of sulfate. Further, these experiments reveal a complex biochemistry associated with sulfite reduction. That is, under high sulfite concentrations, sulfur is shuttled to an intermediate pool of thiosulfate. Site-specific isotope fractionation (within thiosulfate) is very large ((34)ε ~ 30‰) while terminal product sulfide carries only a small fractionation from the initial sulfite ((34)ε < 10‰): a signature similar in magnitude to sulfate and thiosulfate reduction. Together these findings show that microbial sulfate reduction (MSR) is highly sensitive to the concentration of environmentally important sulfur-cycle intermediates (sulfite and thiosulfate), especially when thiosulfate and the large site-specific isotope effects are involved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...